Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Mais filtros










Base de dados
Intervalo de ano de publicação
1.
New Phytol ; 239(3): 979-991, 2023 08.
Artigo em Inglês | MEDLINE | ID: mdl-37219878

RESUMO

Plants perceive the direction of gravity during skotomorphogenic growth, and of gravity and light during photomorphogenic growth. Gravity perception occurs through the sedimentation of starch granules in shoot endodermal and root columella cells. In this study, we demonstrate that the Arabidopsis thaliana GATA factors GNC (GATA, NITRATE-INDUCIBLE, CARBON METABOLISM-INVOLVED) and GNL/CGA1 (GNC-LIKE/CYTOKININ-RESPONSIVE GATA1) repress starch granule growth and amyloplast differentiation in endodermal cells. In our comprehensive study, we analysed gravitropic responses in the shoot, root and hypocotyl. We performed an RNA-seq analysis, used advanced microscopy techniques to examine starch granule size, number and morphology and quantified transitory starch degradation patterns. Using transmission electron microscopy, we examined amyloplast development. Our results indicate that the altered gravitropic responses in hypocotyls, shoots and roots of gnc gnl mutants and GNL overexpressors are due to the differential accumulation of starch granules observed in the GATA genotypes. At the whole-plant level, GNC and GNL play a more complex role in starch synthesis, degradation and starch granule initiation. Our findings suggest that the light-regulated GNC and GNL help balance phototropic and gravitropic growth responses after the transition from skotomorphogenesis to photomorphogenesis by repressing the growth of starch granules.


Assuntos
Proteínas de Arabidopsis , Arabidopsis , Arabidopsis/metabolismo , Fatores de Transcrição GATA/genética , Fatores de Transcrição GATA/metabolismo , Proteínas de Arabidopsis/metabolismo , Citocininas/metabolismo , Amido/metabolismo , Gravitropismo/genética , Mutação/genética , Raízes de Plantas/metabolismo , Fatores de Transcrição/metabolismo
2.
Plant J ; 105(1): 7-21, 2021 01.
Artigo em Inglês | MEDLINE | ID: mdl-33111454

RESUMO

Members of the plant specific RAV family of transcription factors regulate several developmental and physiological processes. In the model plant Arabidopsis thaliana, the RAV TEMPRANILLO 1 (TEM1) and TEM2 control important phase changes such as the juvenile to adult and the vegetative to reproductive transitions. Besides their known regulatory function in plant development, a transcriptomics analysis of transgenic plants overexpressing TEM1 also revealed overrepresentation of Gene Ontology (GO) categories related to abiotic stress responses. Therefore, to investigate the biological relevance of these TEM-dependent transcriptomic changes and elucidate whether TEMs contribute to the modulation of plant growth in response to salinity, we analyzed the behavior of TEM gain and loss of function mutants subjected to mild and high salt stresses at different development stages. With respect to increasing salinity, TEM overexpressing plants were hypersensitive whereas the tem1 tem2 double mutants were more tolerant. Precisely, tem1 tem2 mutants germinated and flowered faster than the wild-type plants under salt stress conditions. Also, tem1 tem2 plants showed a delay in salt-induced leaf senescence, possibly as a consequence of downregulation of jasmonic acid biosynthesis genes. Besides a shorter life cycle and delayed senescence, tem1 tem2 mutants appeared to be better suited to withstand oxidative stress as they accumulated higher levels of α-tocopherol (an important antioxidant metabolite) and displayed a slower degradation of photosynthetic pigments. Taken together, our studies suggest novel and crucial roles for TEM in adaptive growth as they modulate plant development in response to environmental changes such as increasing soil salinity.


Assuntos
Proteínas de Arabidopsis/fisiologia , Arabidopsis/metabolismo , Tolerância ao Sal , Fatores Genéricos de Transcrição/fisiologia , Fatores de Transcrição/fisiologia , Arabidopsis/fisiologia , Proteínas de Arabidopsis/genética , Proteínas de Arabidopsis/metabolismo , Flores/crescimento & desenvolvimento , Perfilação da Expressão Gênica , Regulação da Expressão Gênica de Plantas , Estresse Oxidativo/fisiologia , Estresse Salino , Fatores de Transcrição/metabolismo , Fatores Genéricos de Transcrição/genética , Fatores Genéricos de Transcrição/metabolismo
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...